
September 2013 FoxRockX Page 1

VFP: Ideal for Tools, Part 2
VFP provides lots of commands and functions for exploring classes and forms that 
help in building developer tools.

Tamar E. Granor, Ph.D.

In my last article, I wrote about VFP language ele-
ments related to data that are useful for building 
developer tools. This time, I’ll focus on language 
related to classes and forms.
The VFP language makes it easy to write tools that 
enhance development. There are lots of functions 
and some commands that let you explore and mod-
ify the code you’re working on. For class libraries 
and forms, there’s a particularly rich set of ways to 
look inside and make changes.

Note that this article looks only at VCX-based 
classes. The next article in this series will show 
ways to peek inside PRG-based classes.

As in my last article, the examples in this article 
are mostly drawn from tools that come with VFP or 
are available in VFPX.

Treating VFP files as data
One of the things that has long made VFP’s archi-
tecture so open is that many of the files used to 
store code are actually VFP tables. For example, the 
Form Designer creates a SCX/SCT pair. The SCX is 
really a DBF (table), while the SCT is an FPT (memo 
file). Table 1 shows the various VFP file types that 
are actually tables.

Table 1. VFP stores a variety of objects in tables.

File type Table (DBF) 
extension

Memo (FPT) 
extension

Class 
library

VCX VCT

Form SCX SCT
Label LBX LBT
Menu MNX MNT
Project PJX PJT
Report FRX FRT

Having all these definitions in tables means that 
you can use the normal data-handling tools of VFP 
to work on them. For example, the method in List-
ing 1 comes from the VFPX PEM Editor tool (specif-
ically, the pemeditor_idex class); it checks whether 
a specified class is in a specified class  library. 

Listing 1. This method, called GoToDefProcessVCXForClass, 
comes from PEM Editor. It determines whether a particular 
class is defined in a particular class library.
Lparameters tcVCX, tcName, toInclude

*** Doug Hennig 2010-11-18
Local llOK, lnSelect
lnSelect = Select()
Select 0

Try
  Use (tcVCX) Again Shared Alias This_VCX
  llOK = .T.
Catch
  llOK = .F.
Endtry

If llOK
  Locate For (Lower (objname)) == ;
    Lower (tcName) ;
    And Lower(reserved1) = 'class' ;
    And Not Deleted()
  If Found()
    toInclude.File       = tcVCX
  EndIf
  Use 
Endif

Select (lnSelect)
Return

I’ve used the ability to treat VFP’s forms, class 
libraries and projects as tables extensively in writ-
ing “quick and dirty” tools to handle a particular 
problem.

You can find documentation for many of 
these tables in the Tools\FileSpec folder of your 
VPF installation. It contains data and reports that 
document the fields. For example, Figure 1 shows 
part of report60scx1, which documents the SCX 
and VCX file structures.

Looking into class libraries
Two functions let you look inside class libraries to 
see what they contain. AVCXClasses() fills an array 
with information about the classes in a class library, 
while AGetClass() lets a user choose a class from a 
class library.

AVCXClasses() takes two parameters, an array 
and the name of a class library and fills the array 
with information about each class in the class 
library. The resulting array has eleven columns, 
described in Table 2.



Page 2 FoxRockX September 2013

Table 2. Each column of the array created by AVCXClasses() 
contains one information item about a class in the specified 
class library.

Column Contains
1 Name of the class.
2 Base class.
3 Parent class.
4 Relative path and file name for the 

class library of the parent class. Empty 
if the parent class is a VFP base class.

5 Relative path and file name for the 
image specified as the class’s custom 
icon. This is the Toolbar icon in the 
Class Info dialog.

6 Relative path and file name for the 
image specified as the class’s icon for 
use in the Project Manager and Class 
Browser. This is the Container icon in 
the Class Info dialog.

7 Scale mode for the class, either “Pixels” 
or “Foxels.”

8 Description of the class (from the 
Description editbox in the Class Info 
dialog).

9 Relative path and file name for the 
include file specified for the class. 
Empty if no include file is specified.

10 User-defined information for the class, 
from the User memo field in the VCX.

11 OLEPUBLIC status of the class, either 
.T. or .F.

The Toolbox uses AVCXClasses() when you 
add a class library to a category. The code in List-
ing 2 is drawn from the CreateToolsFromVCX 

method of the ToolboxEngine class. (Note that I’ve 
removed some of the code for brevity.) This code 
gets the list of classes in the specified class library, 
checks whether they’re already in the Toolbox, and 
if not, loops through them, creating a tool for each.

Listing 2. The ToolboxEngine class’s CreateToolsFromVCX 
method uses AVCXClasses() to find out what classes to add.
TRY
  m.nCnt = AVCXCLASSES(aVCXInfo, m.cFilename)
  *** Code to set up progress bar omitted

  FOR m.i = 1 TO m.nCnt
    *** Code to update progress bar omitted

    m.lDupe = .F.
    SELECT ToolboxCursor
    SCAN ALL FOR ParentID == m.cCategoryID ;
         AND SetID == m.cSetID
      m.oToolItem = THIS.GetToolObject( ;
        ToolboxCursor.UniqueID)
      IF VARTYPE(m.oToolItem) == 'O'
        * it's a duplicate, so ignore
        m.cClassName = LOWER(THIS.EvalText( ;
          NVL(oToolItem.GetDataValue( ;
          "classname"), '')))
        IF m.cClassName == ;
           LOWER(aVCXInfo[m.i, 1])
          m.lDupe = .T.
          EXIT
        ENDIF
      ENDIF
    ENDSCAN

    IF !m.lDupe
      m.cImageFile = THIS.GetImageForClass( ;
        aVCXInfo[m.i, 2], aVCXInfo[m.i, 5])

      m.cToolTip = aVCXInfo[m.i, 8]  
        && class description
      m.oToolItem = THIS.CreateToolItem( ;
        m.cCategoryID, ;
        THIS.GenerateToolName( ;
        JUSTSTEM(m.cFilename), ;
        aVCXInfo[m.i, 1]), ;

Figure 1. This is one of a group of reports that contain information about the structure of the various tables used to store VFP compo-
nents.



September 2013 FoxRockX Page 3

        m.cToolTip, "CLASS", m.cImageFile, ;
        m.cSetID, '')

      IF VARTYPE(m.oToolItem) == 'O'
        oToolItem.SetDataValue("classlib", ;
          m.cClassLib)
        oToolItem.SetDataValue("classname", ;
          aVCXInfo[m.i, 1])
        oToolItem.SetDataValue("objectname", ;
          aVCXInfo[m.i, 1])
        oToolItem.SetDataValue("parentclass",;
          aVCXInfo[m.i, 3])
        oToolItem.SetDataValue("baseclass", ;
          aVCXInfo[m.i, 2])

        m.lUpdated = THIS.SaveToolItem( ;
          m.oToolItem, .T.)
      ENDIF
    ENDIF
  ENDFOR

AGetClass() is useful for the user interface of 
developer tools. It displays the Open dialog, set up 
to select a class library, and puts information about 
the selected class library into a two-element array. 
You can pass a number of parameters to customize 
the dialog; Listing 3 shows the syntax.

Listing 3. Use AGetClass() to have the user choose a class 
library. 
lSuccess = AGetClass( ArrayName 
             [, cClassLib 
             [, cClass 
             [, cDialogCaption
             [, cFileNameCaption 
             [, cButtonCaption ] ] ] ] ] )

The cClassLib and cClass parameters specify a 
class library and class to highlight when the dialog 
opens. cDialogCaption provides a caption for 
the title bar; if you omit it, the caption is “Open.” 
cFileNameCaption is the text to display instead of 
the default “File name:” next to the textbox that 
holds the name of the selected file. (It’s the same as 
the second parameter to GetFile().) cButtonCaption 
specifies the text to appear on the OK button. (It’s 
the same as the third parameter to GetFile().) 

The Types page of the IntelliSense Manager 
calls AGetClass() in the Click method of the Class-
es… button, as shown in Figure 2. The relevant code 
is shown in Listing 4, though most of the method is 
omitted here.

Listing 4. This code is in the Click method of the Classes… 
button of the IntelliSense Manager.
IF aGetClass(aMyClass)
  lcFile = aMyClass[1]
  lcClass = aMyClass[2]
  IF !FILE(lcFile) OR EMPTY(lcClass)
    MESSAGEBOX(BADCLASSFILE_LOC,48)
    RETURN
  ENDIF

Getting a handle on a class or 
form
One of the unusual strengths of VFP is the ability 
to modify classes and forms programmatically at 
design-time, as well as at runtime. When the Form 
Designer or Class Designer is open, you can get a 
reference to the object being designed, as well as 
to the objects it contains. You can not only check 
their properties, events and methods (PEMs), but 
change them.

One way to get access to objects is ASelObj(). It 
fills an array with references to the selected  objects 
in the Form Designer or Class Designer. The syntax 
for ASelObj() is shown in Listing 5, while Table 3 
shows the possible values for the second parameter.

Listing 5. ASelObj() lets you grab references to whatever is 
selected in the Form or Class Designer.
nSelected = ASelObj( ArrayName [, nContainer])

ASelObj() is used widely in VFP tools. Listing 6 
shows a fairly generic use, getting a reference to the 
selected object, or if no object is selected, the cur-
rent form or class; it’s drawn from the SetupEngine 
method of the MemberDataEngine class, the driver 
for the MemberData Editor.

Figure 2. The Classes… button in the IntelliSense Manager calls AGetClass() to show the Open dialog, configured for choosing a class.



Page 4 FoxRockX September 2013

Listing 6. This code, from the SetupEngine method of the 
MemberDataEngine class, looks for one or more selected 
objects. If none are found, it gets a reference to the form or 
class being edited.
lnObjects = aselobj(laObjects)
if lnObjects = 0
  lnObjects = aselobj(laObjects, 1)
endif lnObjects = 0
if lnObjects > 0
  .oObject = laObjects[1]
endif lnObjects > 0

Table 3. The second parameter for ASelObj() determines what 
the function puts into the array.

Parameter 
value

Array contains

Omitted One element for each selected 
object, with an object reference.

1 One element, an object reference 
to the container for the selected 
objects.

2 One element, an object reference 
to the data environment for the 
form. If the selected object is a 
class, the array is unchanged.

3 Three elements:
An object reference to the 
container for the selected objects;
The name of the SCX or VCX for 
the form or class;
The path and name of the include 
file specified for the form or class; 
empty, if none is specified.

xTwo other functions, SYS(1270) and 
AMouseObj(), let you find out about the object under 
the mouse or, in the case of SYS(1270), at a specified 
location. These functions work both at design-time 
and at runtime. The syntax for these functions is 
shown in Listing 7.

Listing 7. The AMouseObj() and SYS(1270) functions both let 
you get a handle to an object at runtime or design-time.
nElements = AMouseObj( ArrayName 
                       [, nRelativeToForm])
uReturn = SYS(1270 [, nXCoord, nYCoord ] )

AMouseObj() provides more data than 
SYS(1270). It puts four items in the array: an object 
reference to the object under the mouse, an object 
reference to that object’s container, and the column 
and row (in pixels) of the mouse position. If you pass 
the optional second parameter, the second, third 
and fourth elements are based on the outermost 
container. In that case, at runtime or when the mouse 
is over a form being designed, the second element of 
the array is an object reference to the containing form; 
if the mouse is over the Class Designer, the second 
element is an object reference to the class being 
designed. With the nRelativeToForm parameter, the 

third and fourth elements of the array measure the 
mouse position relative to the object referenced in 
the second parameter.

The Toolbox uses AMouseObj() to prevent 
users from dropping items dragged out of the 
Toolbox onto the Toolbox itself (though you can 
drop onto a category header to add the item to 
that category). The code in Listing 8 appears in the 
DropObject method of the _root class from which 
all Toolbox tools are derived.

Listing 8. This code, from the _root.DropObject in the Toolbox 
code, prevents you from dropping an item dragged out of the 
Toolbox onto the Toolbox itself.
IF AMOUSEOBJ(aDropTarget, 1) > 0 AND ;
   LOWER(aDropTarget[2].Name) = "toolbox"
  RELEASE m.aDropTarget
  RETURN
ENDIF

While SYS(1270) provides only an object refer-
ence, it has flexibility that AMouseObj() doesn’t. 
You can pass a point (that is, X and Y coordinates) 
and the function tells you what’s under the speci-
fied point. There are two tricky issues here. First, 
the coordinates you pass are relative to the screen, 
not to the form you’re running or even to VFP. So 
you may need to add _VFP.Left and _VFP.Top, 
 respectively, to the coordinates of the point you’re 
interested in to get the right answer. The second 
 issue is that if you specify a point that isn’t inside 
VFP, the function returns .F., so you need to check 
the return value’s type before treating it as an  object.

The Thor tool, Insert full name of object under 
mouse, uses SYS(1270) to find out what object it is. 
Listing 9 shows that part of the tool code.

Listing 9. This code in the Thor tool Insert full name of object 
under mouse finds the relevant object using SYS(1270). Later 
code in the tool (not shown here) finds the full name (including 
path) of the object referenced by bb.
bb    = Sys(1270)
If 'O' # Vartype (bb)
  Return
Endif

Examining and modifying objects
Once you have access to an object, you can look 
at or change its properties. But VFP also provides 
tools that let you determine the properties and 
methods of an object, and at design-time, examine 
and modify method code as well as properties.

What’s in there?
There are several ways to find out what PEMs an 
object has. To get a complete list for the object, use 
the AMembers() function. To learn about a particu-
lar PEM, use PEMStatus(). 

AMembers() fills an array with information 
about the PEMs of a specified object. Exactly what 
information you get is determined by the param-



September 2013 FoxRockX Page 5

eters you pass. Listing 10 shows the syntax of the 
function, while Table 4 shows the possible values 
for nInfoType. As the table indicates, AMembers() 
can address COM objects as well as VFP objects, 
though there are some restrictions.

Listing 10. The AMembers() function fills an array with informa-
tion about the object you pass.
nMembers = AMEMBERS( ArrayName, oObject 
             [, nInfoType [, cFlags] ] )

Table 4. AMembers() can collect several different sets of in-
formation, depending on which value you pass for the third 
parameter.

nInfoType Array contains
Omitted 
or 0

An alphabetical list of the object’s 
properties. The array is one-
dimensional.

1 A complete list of the object’s 
PEMs and member objects. The 
array has two columns, with the 
names in the first and a string 
indicating the type of member in 
the second.

2 A list of the object’s member 
objects. The array is one-
dimensional.

3 A complete list of the object’s 
PEMs with additional information 
about each. The array has either 
four or five columns, depending on 
whether the object is a VFP object 
or a COM object, and on the value 
of the cFlags parameter.

The fourth parameter lets you filter the PEMs 
included in the array. Pass a string containing one 
or more of the letters in Table 5 to include PEMs 
with one or more of the specific characteristics. By 
default, the results are unioned, so you get any 
PEMs that have any of the characteristics. If “+” 
is included in the parameter, the other items are 
intersected, so you get only PEMs that have all of 
the specified characteristics. Finally, include “#” in 
cFlags, and the resulting array has five columns, 
with the fifth containing the flag characters that 
 apply to each PEM.

AMembers() is extremely valuable when 
building any tool that needs to address the list of 
PEMs for an object. Listing 11 shows code from the 
 Object Inspector I built (see the January, 2011 issue 
of FoxRockX) that puts an object’s properties and 
their values into a cursor, so they can be shown in 
a grid in the right pane. Figure 3 shows the tool in 
use, with an arrow indicating the grid.

Listing 11. This code from the Object Inspector put properties 
and their values into a cursor for display in a grid.
nPropCount = AMEMBERS(aProps, m.oObject, 0)
FOR nProp = 1 TO m.nPropCount
  cType = TYPE("oObject." + aProps[m.nProp])

  IF m.cType <> "U"
    cValue = TRANSFORM(EVALUATE("oObject." + ;
             aProps[m.nProp]))
  ELSE
    cValue = ;
      "<Property could not be evaluated>"
  ENDIF 

  INSERT INTO (This.cCursorAlias) ;
    VALUES (aProps[m.nProp], m.cType, ;
            m.cValue)
ENDFOR

Table 5 shows the flag characters in groups to 
make it easier to understand the choices.

Table 5. AMembers()’ fourth parameter lets you limit the PEMs 
that are contained in the array by specifying some or all of 
these flags.

Flag 
Character

Group Indicates

“G” Visibility Include public PEMs.
“H” Visibility Include hidden 

PEMs.
“P” Visibility Include protected 

PEMs.
“N” Origin Include native PEMs, 

that is, those that are 
part of the object’s 
base class.

“U” Origin Include user-defined 
PEMs, those added 
at some point in the 
class hierarchy.

“B” Inheritance Include PEMs 
defined at this 
level (that is, not 
inherited).

“I” Inheritance Include PEMs 
inherited from 
another class.

“C” Changed Include PEMs 
changed at some 
level of the class 
hierarchy.

“R” Read-only Include read-only 
PEMs.

“+” Management Combine the 
characters in cFlags 
with “and” rather 
than “or.”

“#” Management Add a flags column 
to the array.

If you only need information about a single 
PEM, AMembers() is overkill. PEMStatus() pro-
vides much of the same information, one PEM at a 
time. Listing 12 shows the syntax for PEMStatus(),  
while Table 6 shows the legal values for nAttribute. 
As you can see, several of the attributes here map 
directly to flags for AMembers().



Page 6 FoxRockX September 2013

L isting 12. PEMStatus() answers questions about a particular 
property, event or method.
uResult = PEMStatus( oObject, cPEMName, 
                     nAttribute )

T able 6. The nAttribute parameter tells PEMStatus() what infor-
mation to return. 

nAttribute PEMStatus() returns
0 A logical value that indicates 

whether the PEM has been 
changed.

1 A logical value that indicates 
whether the property is read-only. 
Applies only to properties.

2 A logical value that indicates 
whether the property is protected.

3 A string that indicates whether the 
specifi ed PEM is a property, event, 
method or object.

4 A logical value that indicates 
whether the PEM is user-defi ned.

5 A logical value that indicates 
whether the object has the 
specifi ed PEM.

6 A logical value that indicates 
whether the PEM was inherited 
from a class higher in the 
inheritance hierarchy.

I use nAttribute=5 more than anything else, 
so I can write generic code that checks whether 
a given property or method exists. But you can 
also use it for such things as ensuring that you 
can write a new value to a property. The code in 

Listing 13, drawn from the Toolbox (specifi cally, 
the OnCompleteDrag method of the _ImageTool 
class) does both.

 Listing 13. This code from the Toolbox, checks whether the 
Left and Top properties are read-only or protected before at-
tempting to change their values. For the Visible property, it 
checks those two, but fi rst checks whether the object has that 
property.
IF VARTYPE(m.oObjRef) == 'O'
  IF !PEMSTATUS(m.oObjRef, "Left", 1) AND ;
     !PEMSTATUS(m.oObjRef, "Left", 2)
    m.oObjRef.Left = m.nMouseXpos
  ENDIF
  IF !PEMSTATUS(m.oObjRef, "Top", 1) AND ;
     !PEMSTATUS(m.oObjRef, "Top", 2)
    m.oObjRef.Top  = m.nMouseYPos
  ENDIF
  IF PEMSTATUS(m.oObjRef, "Visible", 5) AND ;
     !PEMSTATUS(m.oObjRef, "Visible", 1) AND ;
     !PEMSTATUS(m.oObjRef, "Visible", 2)
    m.oObjRef.Visible = .T.
  ENDIF
ENDIF

Making changes at design-time
For developer tools, we generally need the ability 
to change things at design-time. As the previous 
example demonstrates, it’s easy to change the value 
of a property at design-time. But we also may want 
to change method code. In addition, sometimes 
what we want to store in a property is not a value, 
but an expression to be evaluated at runtime. A 
set of four methods gives us the ability to see the 
content of any PEM, and to change it.

ReadMethod and WriteMethod apply to meth-
od code. Use ReadMethod to retrieve the current 
code for any method of an object; the syntax is 
shown in Listing 14.

F igure 3. The code in Listing 11 is used to create the cursor that populates the grid in this tool.



September 2013 FoxRockX Page 7

Listing 14. The ReadMethod method of each VFP base class 
(except Empty) lets you retrieve the code for any method.
cCode = oObject.ReadMethod(cMethod)

The Find capability of PEM Editor uses 
ReadMethod to figure out whether a method has 
code, as shown in Listing 15. (Note the use of 
PEMStatus() as well to ensure that the specified 
object actually has the method in question and has 
been changed.)

Listing 15. PEM Editor’s Find capability uses ReadMethod to 
determine whether a method has code at this level.
Function NonDefault (lcName)
  If Pemstatus(goObject, lcName, 5) And ;
     Pemstatus(goObject, lcName, 0)
    If Inlist(Pemstatus(goObject, lcName, 3),;
              'Method', 'Event')

      Return Not Empty( ;
        goObject.ReadMethod(lcName)) 

    Else
      Return .T.
    Endif
  Else
    Return .F.
  Endif
EndFunc

The corresponding WriteMethod method lets 
you store code in a method. You can even add a 
method and give it code all at once. Listing 16 
shows the syntax. The lAddMethod parameter 
indicates whether to add the method if it doesn’t 
already exist. Use nVisibility to indicate whether 
your new method is public (1), private (2) or hid-
den (3). As you’d expect, the cDescription param-
eter lets you provide a description for the method 
that appears in the Property Sheet.

Listing 16. Use WriteMethod to create methods and to popu-
late them.
oObject.WriteMethod(cMethodName, cMethodText 
                    [, lAddMethod 
                    [, nVisibility 
                    [, cDescription ] ] ] )

The code in Listing 17 comes from the 
PEMEditor_Utils class library of the PEM Editor; 
it’s used when copying PEMs from one object to 
another.

Listing 17. This code, from the DoPasteProperties method of 
PEMEditor_Utils, uses WriteMethod to create a new method, if 
necessary, and to store the copied code.
For lnRow = 1 To Alen( ;
   This.oServer.aCopiedProperties, 1)
  lcPem = ;
    This.oServer.aCopiedProperties(lnRow, 1)

  lcDescript = Rtrim(  ;
    This.oServer.aCopiedProperties(lnRow, ;
    ccPasteDescriptCol))
  lcType     = ;
    This.oServer.aCopiedProperties(lnRow, ;
    ccPasteTypeCol)
  lxValue     = ;
    This.oServer.aCopiedProperties(lnRow, ;

    ccPasteValueCol)
  lbNew     = ;
    This.oServer.aCopiedProperties(lnRow, ;
    ccPastelNewCol)
  lbSelect   = ;
    This.oServer.aCopiedProperties(lnRow, ;
    ccPasteSelectCol)
  lnVisibility   = ;
    This.oServer.aCopiedProperties(lnRow, ;
    ccVisibilityCol)

  Try
    Do Case
      Case Not ;
       (This.oServer.aCopiedProperties(lnRow,;
       ccNonDefaultCol) Or llAll)

      Case Not lbSelect

      Case Upper (lcPem) == '_MEMBERDATA'

      Case lcType = 'M'
        If lbNew

          loObject.WriteMethod(lcPem, ;
            lxValue, .T., lnVisibility, ‚
            lcDescript)

        Else
          loObject.WriteMethod(lcPem, lxValue) 
            && , lnVisibility, lcDescript)
        Endif

      Case lcType = 'X'
        If lbNew
          loObject.AddProperty(lcPem, ;
            lxValue, lnVisibility, lcDescript)
        Endif
        loObject.WriteExpression(lcPem, ;
          lxValue, lnVisibility, lcDescript)

      Case lcType = 'V'
        If lbNew
          loObject.AddProperty(lcPem, ;
            lxValue, lnVisibility, lcDescript)
        Else
          loObject.WriteExpression(lcPem, '')
          loObject.AddProperty(lcPem, ;
            lxValue, lnVisibility, lcDescript)
        Endif

    Endcase
    **** Code related to memberdata removed 
    **** for this example 
    ******************************************
****

  Catch To loException
    lcErrors = lcErrors + lcPem + ": " + ;
      loException.Message + " (" + ;
      Transform(loException.ErrorNo) + ")" + ;
      CR
  Endtry
Endfor

You might wonder why you need methods to 
read and write properties since you can just access 
a property value directly. The ReadExpression and 
WriteExpression methods let you deal with prop-
erties where an expression is assigned rather than 
a value. For example, you might have a property 
called dToday to hold today’s date; in the property 
sheet, it would be assigned “=DATE().” Checking 



Page 8 FoxRockX September 2013

the value of dToday would give you the actual date, 
not the expression. But ReadExpression  returns the 
expression.

The syntax for these methods is pretty simple; 
it’s shown in Listing 18.

Listing 18. The ReadExpression and WriteExpression methods 
let you work with expressions stored in the Property Sheet.
cPropertyExpression = 
  oObject.ReadExpression( cProperty )
oObject.WriteExpression( cProperty, 
  cPropertyExpression )

PEM Editor uses both of these functions in 
a method that lets users enter property values 
or  expressions. The Expression Builder method, 
shown in Listing 19, retrieves the current value of 
a property using ReadExpression, then calls the 
Expression Builder (using the GetExpr() function), 
then writes the result back to the property using 
WriteExpression.

Listing 19. This method from PEM Editor lets a user edit the 
value of a property.
Procedure ExpressionBuilder( loObject, lcPEM)
  Local lcExpression, lcNewExpression, ;
        loException

  lcExpression = Substr( ;
    loObject.ReadExpression(lcPEM), 2)

  Getexpr (lcPEM) To lcNewExpression ;
    Default (lcExpression)

  Try

    loObject.WriteExpression(lcPEM, ;
      lcNewExpression)
  Catch To loException

  Endtry

Endproc

Programs and Projects up next
The final installment of this series will explore the 
language elements VFP provides for working with 
programmatic code and projects.

Authoren Profil
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s 
 Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other 
organizations. Tamar is author or co-author of nearly 
a dozen books including the award winning Hacker’s 
Guide to Visual FoxPro, Microsoft Office Automation 
with Visual FoxPro and Taming Visual FoxPro’s SQL. 
Her latest collaboration is VFPX: Open Source Treasure 
for the VFP Developer available at www.foxrockx.com 
Her other books are available from Hentzenwerke Pub-
lishing (www.hentzenwerke.com). Tamar was a Microsoft 
Support Most Valuable Professional from the program's 
inception in 1993 until 2011. She is one of the organizers 
of the annual Southwest Fox conference. In 2007, Tamar 
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.


